Meerkat Mafia: Multilingual and Cross-Level Semantic Textual Similarity Systems

نویسندگان

  • Abhay L. Kashyap
  • Lushan Han
  • Roberto Yus
  • Jennifer Sleeman
  • Taneeya Satyapanich
  • Sunil Gandhi
  • Timothy W. Finin
چکیده

We describe UMBC’s systems developed for the SemEval 2014 tasks on Multilingual Semantic Textual Similarity (Task 10) and Cross-Level Semantic Similarity (Task 3). Our best submission in the Multilingual task ranked second in both English and Spanish subtasks using an unsupervised approach. Our best systems for Cross-Level task ranked second in Paragraph-Sentence and first in both Sentence-Phrase and Word-Sense subtask. The system ranked first for the PhraseWord subtask but was not included in the official results due to a late submission.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

BUAP: Evaluating Features for Multilingual and Cross-Level Semantic Textual Similarity

In this paper we present the evaluation of different features for multiligual and crosslevel semantic textual similarity. Three different types of features were used: lexical, knowledge-based and corpus-based. The results obtained at the Semeval competition rank our approaches above the average of the rest of the teams highlighting the usefulness of the features presented in this paper.

متن کامل

ECNU at SemEval-2017 Task 1: Leverage Kernel-based Traditional NLP features and Neural Networks to Build a Universal Model for Multilingual and Cross-lingual Semantic Textual Similarity

To model semantic similarity for multilingual and cross-lingual sentence pairs, we first translate foreign languages into English, and then build an efficient monolingual English system with multiple NLP features. Our system is further supported by deep learning models and our best run achieves the mean Pearson correlation 73.16% in primary track.

متن کامل

Cross-lingual Learning of Semantic Textual Similarity with Multilingual Word Representations

Assessing the semantic similarity between sentences in different languages is challenging. We approach this problem by leveraging multilingual distributional word representations, where similar words in different languages are close to each other. The availability of parallel data allows us to train such representations on a large amount of languages. This allows us to leverage semantic similar...

متن کامل

Robust semantic text similarity using LSA, machine learning, and linguistic resources

Semantic textual similarity is a measure of the degree of semantic equivalence between two pieces of text. We describe the SemSim system and its performance in the *SEM 2013 and SemEval-2014 tasks on semantic textual similarity. At the core of our system lies a robust distributional word similarity component that combines Latent Semantic Analysis and machine learning augmented with data from se...

متن کامل

SemEval-2017 Task 1: Semantic Textual Similarity Multilingual and Crosslingual Focused Evaluation

Semantic Textual Similarity (STS) measures the meaning similarity of sentences. Applications include machine translation (MT), summarization, generation, question answering (QA), short answer grading, semantic search, dialog and conversational systems. The STS shared task is a venue for assessing the current state-of-the-art. The 2017 task focuses on multilingual and cross-lingual pairs with on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014